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Abstract: Our goal is to present a general approach for the planar chains with rotational 
links with clearances. This approach is realized in a multibody style, the main problem 
being the determination of the matrix of constraints. Introduction 

The application of the multibody type methods [1-13], made possible the elaboration of 
certain general algorithms for the numerical, dynamical and elasto-dynamical calculation of 
the kinematical and dynamical parameters for the mechanical systems’ motions. These 
algorithms can be applied both to the determined kinematical mechanical systems with and 
without friction [4,9,14], respectively with one degree of mobility, and to the systems with 
one degree of mobility and a single motor element as, for instance, [2,7,12], the mechanical 
convertor of torque created by G. Constantinescu. The applications of the multibody type 
methods for the studying of the planar mechanical systems having articulations with 
clearances (rotational kinematical joints) [3,4,6,10,14], assumes the inserting of certain 
virtual without mass elements, which leads to singular matrix of inertia and, consequently, it 
does not permit the separation of the general system of equations in two systems from 
which result, in order, the time history of the reactions and then the time history of the 
kinematical parameters. In this paper we elaborate a multibody type method based on a new 
form of the matrix of constraints, method that permits the numerical dynamical study of the 
planar systems with rotational joints with or without clearance, with one or several degrees 
of freedom. 

 
1. General Aspects 

We consider the planar kinematical chain 
from the Figure 1 at which the elements 
denoted by 1, 2, … are linked one to 
another by rotational kinematical links with 
or without clearance 1O , 2O  Denoting by 

iC  the centre of weight of an element i , 
which is either a bar, or a shell, and 
denoting by iii yxC  the proper reference 
system, Figure 2, then the position of this 
elements, relative to the general fixed 
reference system OXY , is defined by the 
coordinates iX , iY  of the centre of weight, 
and by the angle iθ  between the axes ii xC  
and OX . 

This element, linked to the next element 
j  by the rotational joint kO , can have a 

point )~,~(~
lll YXO  with known motion, 

 )(~~ tXX ll = , )(~~ tYY ll = .  
If the rotational kinematical joint kO  is 

with clearance, Figure 3, with permanent 
contact between the elements i  and j , 
then the clearance can be defined by the 
difference )()( j

k
i

kk OOr = , )()( j
k

i
kk rrr −= , 

between the radius )(i
kr  of the rim and the 

radius )( j
kr  of the shaft, and by the angle 

kα  between )()( j
k

i
k OO  and OX . 
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Figure 1. Planar kinematical chain. 
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Figure 2. Determination of position for the 

element i . 

 
Functions of constraint. Conditions of 
constraint. Matrix of constraints  
Conditions given by the existence of the 
rotational kinematical joint 

We consider the elements i , j , Figure 4 
linked one to another by the rotational 
kinematical joint with clearance kO  and let 

)(i
kx , )( j

ky  be the coordinates of the point 
)(i

kO  in the local reference system iii yxC . 
If we use the notations 

i
i

ki
i

k
i

kX yxU θθ sincos )()()( −=  

i
i

ki
i

k
i

kY yxU θθ cossin )()()( += , 
(1) 

then the coordinates )(i
kX , )(i

kY  of the point 
)(i

kO  in the reference system OXY  are 
expressed by the relations 

)()( i
kXi

i
k UXX += , )()( i

kYi
i

k UYY += , (2) 

and the coordinates )( j
kX , )( j

kY  of the point 
)( j

kO  in the system OXY  are obtained with 
the same relations (2) in which we replace 
the index i  by the index j . 

Keeping into account the sense cover 
sense of a contour, Figure 4, and using the 
notation 

{ }












−

−
=

)()(

)()(1
i

k
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k

i
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j
k

k
k
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XX
r

D  (3) 

one can write the constraining functions in 
the form, equations number (4) 
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clearance joint with lkinematica a is  if ,01
clearanceout joint with lkinematica a is  if ,
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a) constructive schema 
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b) kinematical schema. 
Figure 3. Rotational kinematical joint with 

clearance 
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Figure 4. The elements i , j  and the rotational 
kinematical joint with clearance kO . 

By derivation of the relations (1), (3) in 
respect to time and keeping into account the 
notations 

( )[ ]










 −
= )(
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( )[ ] { } ( )[ ]i
k

T
k

i
k BDE =

{ } [ ]Tiiii YX θ=θ  

(5) 

one deduces the equalities 
)()( i

kYi
i

kX UU ⋅−= θ , )()( i
kXi

i
kY UU ⋅= θ  

{ } ( )[ ]{ } ( )[ ]{ }i
i

k
k

j
j

k
k

k rr
qBqBD  11

−=  

 

(6) 

In these conditions, by the derivation of 
the relations (4) in respect to time, one 
obtains the conditions of constraint, we can 
write the relation (7). 

( )[ ]{ } ( )[ ]{ } { }

( )[ ]{ } ( )[ ]{ } ( )












=−

=−

7

clearance joint with lkinematica a is  if

 ,0
clearanceout joint with lkinematica a is  if

 ,

k

i
i

kj
j

k

k

i
i

kj
j

k

O

O
qEqE

0qBqB





In the case of the rotational kinematical 
joint with clearance, Figure 4, using the 
angle kα , we can write the relation 

{ } [ ]Tkkk αα sincos=D  (8) 

and from here results for the matrix ( )[ ]i
kE  

the expression (9); 
( )[ ]

( ) ( )[ ]ki
i

kki
i

kkk

k

yx

E

αθαθαα −−−−=

=

cossinsincos )()(

1

 

3.2. Conditions given by the existence 
of a point lO~  with known motion  
In this case, denoting by lx~ , ly~  the 

coordinates of the point lO~  in the reference 
frame iii yxC  and using the notations 

i
i

li
i

l
i

lX yxU θθ sin~cos~~ )()()( −= , 

i
i

li
i

l
i

lY yxU θθ cossin~ )()()( += , 
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lll YX 
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=  ~~~F , 

one obtains the equalities i
i

lXi XUX ~~ )( =+ , 

i
i

lYi YUY ~~ )( =+ , 
which, by derivation in respect to time and 
keeping into account the relations 

)()( ~~ i
lYi

i
lx UU ⋅−= θ , )()( ~~ i

lXi
i

lY UU ⋅= θ , lead us to 
the constraining condition 

( )[ ]{ } { }li
i

l FqB ~~
=  (10) 

  
3.3. Matrix of constraints. Matrix 

equation of constraint 
Matrix of constraints is obtained by 
assembling matrices of ( )[ ]i

kB , ( )[ ]i
kE , and 

[ ]lB~  type met in the relations (9), (10), 
relations which are written for each 
rotational kinematical joint, respectively for 
each point with known motion. Thus, for 
the kinematical chain drawn in the Figure 
5, at which the element 1 has uniform 
rotational motion with the known angular 
speed ω , and the rotational kinematical 
joint 3O  is one with clearance, one obtains 
the matrix of constraints, 

[ ]
( )[ ] [ ]

[ ] [ ]








−
= )3(

3
)2(

3

2
2

~

EE
0BB , and if the length of 

the element 1 is equal to 1l , then the 
coordinates of the point 2O  in the general 
reference system XYO1  are tlX ωcos~

12 =

, tlY ωsin~
12 =  and we get the matrix 

equations of constraining [ ]{ } { }CqB = , 
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where { } [ ]TYXYX 333222 θθ=θ

, { } [ ]Ttltl 0cossin ωωωω −−=C . 
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Figure 5. Kinematical chain with the element 

21OO  in rotational motion and the rotational 
kinematical joint 3O  with clearance 
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Figure 6. System with five elements and the 
rotational kinematical joints 5O , 6O , with 

clearance. 

In the case when the element 1  has not a 
determined motion, one obtains the matrix 
of constraints 
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and the matrix equation of constraints is 
[ ]{ } { }0qB = ,where 
{ } [ ]TYXYXYX 333222111 θθθ=θ . 

Analogously, for the system with five 
elements drawn in the Figure 6, with the 
rotational kinematical joint 5O , 6O  with 
clearance, we obtain the matrix of 
constraints 
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and the matrix equation of the constraints 
[ ]{ } { }0qB = , where 

{ } [ ]TYXYXq 555111 ... qq= . 
 
3.4. Derivative of the matrix of 
constraints with respect to time 
From the relations (5), (6), in the 
conditions (7), (8), result; 
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The derivative of the matrix [ ]B  with 
respect to time is obtained using these 
expressions. 
 
4. Conclusions 

The establishing in the paper of a new 
form of the matrix of constraints made 
possible the elaboration of the multibody 
method that permits both the numerical 
study of the general motion of the planar 
jointed systems with clearances, and the 
numerical study of the equilibrium 
positions. 

The numerical applications solved here 
confirm the statements mentioned above. 
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